Skip to main content

Deploy & Query Llama2-7B on Sagemaker

This tutorial has 2 major components:

  1. Deploy Llama2-7B on Jumpstart
  2. Use LiteLLM to Query Llama2-7B on Sagemaker

Deploying Llama2-7B on AWS Sagemaker​

Pre-requisites​

Ensure you have AWS quota for deploying your selected LLM. You can apply for a quota increase here: https://console.aws.amazon.com/servicequotas/home

  • ml.g5.48xlarge
  • ml.g5.2xlarge

Create an Amazon SageMaker domain to use Studio and Studio Notebooks​

Deploying Llama2-7B using AWS Sagemaker Jumpstart​

  • After creating your sagemaker domain, click 'Open Studio', which should take you to AWS sagemaker studio

  • On the left sidebar navigate to SageMaker Jumpstart -> Models, notebooks, solutions

  • Now select the LLM you want to deploy by clicking 'View Model' - (in this case select Llama2-7B)

  • Click Deploy for the Model you want to deploy

  • After deploying Llama2, copy your model endpoint

Use LiteLLM to Query Llama2-7B on Sagemaker​

Prerequisites​

  • pip install boto3
  • pip install litellm
  • Create your AWS Access Key, get your AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. You can create a new aws access key on the aws console under Security Credentials under your profile

Querying deployed Llama2-7b​

Set model = sagemaker/<your model endpoint> for completion. Use the model endpoint you got after deploying llama2-7b on sagemaker. If you used jumpstart your model endpoint will look like this jumpstart-dft-meta-textgeneration-llama-2-7b

Code Example:

from litellm import completion
os.environ['AWS_ACCESS_KEY_ID'] = "your-access-key-id"
os.environ['AWS_SECRET_ACCESS_KEY'] = "your-secret-key"

response = completion(
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
messages=[{'role': 'user', 'content': 'are you a llama'}],
temperature=0.2, # optional params
max_tokens=80,
)

That's it! Happy completion()!

Next Steps:​