Skip to main content

Function Calling

Checking if a model supports function calling​

Use litellm.supports_function_calling(model="") -> returns True if model supports Function calling, False if not

assert litellm.supports_function_calling(model="gpt-3.5-turbo") == True
assert litellm.supports_function_calling(model="azure/gpt-4-1106-preview") == True
assert litellm.supports_function_calling(model="palm/chat-bison") == False
assert litellm.supports_function_calling(model="ollama/llama2") == False

Checking if a model supports parallel function calling​

Use litellm.supports_parallel_function_calling(model="") -> returns True if model supports parallel function calling, False if not

assert litellm.supports_parallel_function_calling(model="gpt-4-turbo-preview") == True
assert litellm.supports_parallel_function_calling(model="gpt-4") == False

Parallel Function calling​

Parallel function calling is the model's ability to perform multiple function calls together, allowing the effects and results of these function calls to be resolved in parallel

Quick Start - gpt-3.5-turbo-1106​

Open In Colab

In this example we define a single function get_current_weather.

  • Step 1: Send the model the get_current_weather with the user question
  • Step 2: Parse the output from the model response - Execute the get_current_weather with the model provided args
  • Step 3: Send the model the output from running the get_current_weather function

Full Code - Parallel function calling with gpt-3.5-turbo-1106​

import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request

# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})


def test_parallel_function_call():
try:
# Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nFirst LLM Response:\n", response)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls

print("\nLength of tool calls", len(tool_calls))

# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(response_message) # extend conversation with assistant's reply

# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
second_response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
) # get a new response from the model where it can see the function response
print("\nSecond LLM response:\n", second_response)
return second_response
except Exception as e:
print(f"Error occurred: {e}")

test_parallel_function_call()

Explanation - Parallel function calling​

Below is an explanation of what is happening in the code snippet above for Parallel function calling with gpt-3.5-turbo-1106

Step1: litellm.completion() with tools set to get_current_weather​

import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})

messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]

response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
Expected output​

In the output you can see the model calls the function multiple times - for San Francisco, Tokyo, Paris

ModelResponse(
id='chatcmpl-8MHBKZ9t6bXuhBvUMzoKsfmmlv7xq',
choices=[
Choices(finish_reason='tool_calls',
index=0,
message=Message(content=None, role='assistant',
tool_calls=[
ChatCompletionMessageToolCall(id='call_DN6IiLULWZw7sobV6puCji1O', function=Function(arguments='{"location": "San Francisco", "unit": "celsius"}', name='get_current_weather'), type='function'),

ChatCompletionMessageToolCall(id='call_ERm1JfYO9AFo2oEWRmWUd40c', function=Function(arguments='{"location": "Tokyo", "unit": "celsius"}', name='get_current_weather'), type='function'),

ChatCompletionMessageToolCall(id='call_2lvUVB1y4wKunSxTenR0zClP', function=Function(arguments='{"location": "Paris", "unit": "celsius"}', name='get_current_weather'), type='function')
]))
],
created=1700319953,
model='gpt-3.5-turbo-1106',
object='chat.completion',
system_fingerprint='fp_eeff13170a',
usage={'completion_tokens': 77, 'prompt_tokens': 88, 'total_tokens': 165},
_response_ms=1177.372
)

Step 2 - Parse the Model Response and Execute Functions​

After sending the initial request, parse the model response to identify the function calls it wants to make. In this example, we expect three tool calls, each corresponding to a location (San Francisco, Tokyo, and Paris).

# Check if the model wants to call a function
if tool_calls:
# Execute the functions and prepare responses
available_functions = {
"get_current_weather": get_current_weather,
}

messages.append(response_message) # Extend conversation with assistant's reply

for tool_call in tool_calls:
print(f"\nExecuting tool call\n{tool_call}")
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
# calling the get_current_weather() function
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
print(f"Result from tool call\n{function_response}\n")

# Extend conversation with function response
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
)

Step 3 - Second litellm.completion() call​

Once the functions are executed, send the model the information for each function call and its response. This allows the model to generate a new response considering the effects of the function calls.

second_response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
)
print("Second Response\n", second_response)

Expected output​

ModelResponse(
id='chatcmpl-8MHBLh1ldADBP71OrifKap6YfAd4w',
choices=[
Choices(finish_reason='stop', index=0,
message=Message(content="The current weather in San Francisco is 72°F, in Tokyo it's 10°C, and in Paris it's 22°C.", role='assistant'))
],
created=1700319955,
model='gpt-3.5-turbo-1106',
object='chat.completion',
system_fingerprint='fp_eeff13170a',
usage={'completion_tokens': 28, 'prompt_tokens': 169, 'total_tokens': 197},
_response_ms=1032.431
)

Parallel Function Calling - Azure OpenAI​

# set Azure env variables
import os
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"

import litellm
import json
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})

## Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]

response = litellm.completion(
model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
print("\nTool Choice:\n", tool_calls)

## Step 2 - Parse the Model Response and Execute Functions
# Check if the model wants to call a function
if tool_calls:
# Execute the functions and prepare responses
available_functions = {
"get_current_weather": get_current_weather,
}

messages.append(response_message) # Extend conversation with assistant's reply

for tool_call in tool_calls:
print(f"\nExecuting tool call\n{tool_call}")
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
# calling the get_current_weather() function
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
print(f"Result from tool call\n{function_response}\n")

# Extend conversation with function response
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
)

## Step 3 - Second litellm.completion() call
second_response = litellm.completion(
model="azure/chatgpt-functioncalling",
messages=messages,
)
print("Second Response\n", second_response)
print("Second Response Message\n", second_response.choices[0].message.content)

Deprecated - Function Calling with completion(functions=functions)​

import os, litellm
from litellm import completion

os.environ['OPENAI_API_KEY'] = ""

messages = [
{"role": "user", "content": "What is the weather like in Boston?"}
]

# python function that will get executed
def get_current_weather(location):
if location == "Boston, MA":
return "The weather is 12F"

# JSON Schema to pass to OpenAI
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
]

response = completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions)
print(response)

litellm.function_to_dict - Convert Functions to dictionary for OpenAI function calling​

function_to_dict allows you to pass a function docstring and produce a dictionary usable for OpenAI function calling

Using function_to_dict​

  1. Define your function get_current_weather
  2. Add a docstring to your function get_current_weather
  3. Pass the function to litellm.utils.function_to_dict to get the dictionary for OpenAI function calling
# function with docstring
def get_current_weather(location: str, unit: str):
"""Get the current weather in a given location

Parameters
----------
location : str
The city and state, e.g. San Francisco, CA
unit : {'celsius', 'fahrenheit'}
Temperature unit

Returns
-------
str
a sentence indicating the weather
"""
if location == "Boston, MA":
return "The weather is 12F"

# use litellm.utils.function_to_dict to convert function to dict
function_json = litellm.utils.function_to_dict(get_current_weather)
print(function_json)

Output from function_to_dict​

{
'name': 'get_current_weather',
'description': 'Get the current weather in a given location',
'parameters': {
'type': 'object',
'properties': {
'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'},
'unit': {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
},
'required': ['location', 'unit']
}
}

Using function_to_dict with Function calling​

import os, litellm
from litellm import completion

os.environ['OPENAI_API_KEY'] = ""

messages = [
{"role": "user", "content": "What is the weather like in Boston?"}
]

def get_current_weather(location: str, unit: str):
"""Get the current weather in a given location

Parameters
----------
location : str
The city and state, e.g. San Francisco, CA
unit : str {'celsius', 'fahrenheit'}
Temperature unit

Returns
-------
str
a sentence indicating the weather
"""
if location == "Boston, MA":
return "The weather is 12F"

functions = [litellm.utils.function_to_dict(get_current_weather)]

response = completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions)
print(response)

Function calling for Non-OpenAI LLMs​

Adding Function to prompt​

For Non OpenAI LLMs LiteLLM allows you to add the function to the prompt set: litellm.add_function_to_prompt = True

Usage​

import os, litellm
from litellm import completion

# IMPORTANT - Set this to TRUE to add the function to the prompt for Non OpenAI LLMs
litellm.add_function_to_prompt = True # set add_function_to_prompt for Non OpenAI LLMs

os.environ['ANTHROPIC_API_KEY'] = ""

messages = [
{"role": "user", "content": "What is the weather like in Boston?"}
]

def get_current_weather(location):
if location == "Boston, MA":
return "The weather is 12F"

functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
]

response = completion(model="claude-2", messages=messages, functions=functions)
print(response)