Streaming + Async
Streaming Responses​
LiteLLM supports streaming the model response back by passing stream=True
as an argument to the completion function
Usage​
from litellm import completion
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
print(part.choices[0].delta.content or "")
Helper function​
LiteLLM also exposes a helper function to rebuild the complete streaming response from the list of chunks.
from litellm import completion
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
chunks.append(chunk)
print(litellm.stream_chunk_builder(chunks, messages=messages))
Async Completion​
Asynchronous Completion with LiteLLM. LiteLLM provides an asynchronous version of the completion function called acompletion
Usage​
from litellm import acompletion
import asyncio
async def test_get_response():
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
response = await acompletion(model="gpt-3.5-turbo", messages=messages)
return response
response = asyncio.run(test_get_response())
print(response)
Async Streaming​
We've implemented an __anext__()
function in the streaming object returned. This enables async iteration over the streaming object.
Usage​
Here's an example of using it with openai.
from litellm import acompletion
import asyncio, os, traceback
async def completion_call():
try:
print("test acompletion + streaming")
response = await acompletion(
model="gpt-3.5-turbo",
messages=[{"content": "Hello, how are you?", "role": "user"}],
stream=True
)
print(f"response: {response}")
async for chunk in response:
print(chunk)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
asyncio.run(completion_call())