AWS Bedrock
Anthropic, Amazon Titan, A121 LLMs are Supported on Bedrock
Pre-Requisites​
LiteLLM requires boto3
to be installed on your system for Bedrock requests
pip install boto3>=1.28.57
Required Environment Variables​
os.environ["AWS_ACCESS_KEY_ID"] = "" # Access key
os.environ["AWS_SECRET_ACCESS_KEY"] = "" # Secret access key
os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2
Usage​
import os
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
OpenAI Proxy Usage​
Here's how to call Anthropic with the LiteLLM Proxy Server
1. Save key in your environment​
export AWS_ACCESS_KEY_ID=""
export AWS_SECRET_ACCESS_KEY=""
export AWS_REGION_NAME=""
2. Start the proxy​
$ litellm --model anthropic.claude-3-sonnet-20240229-v1:0
# Server running on http://0.0.0.0:4000
3. Test it​
- Curl Request
- OpenAI v1.0.0+
- Langchain
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Usage - Function Calling​
from litellm import completion
# set env
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
Usage - Vision​
from litellm import completion
# set env
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
def encode_image(image_path):
import base64
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
image_path = "../proxy/cached_logo.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
resp = litellm.completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + base64_image
},
},
],
}
],
)
print(f"\nResponse: {resp}")
Usage - "Assistant Pre-fill"​
If you're using Anthropic's Claude with Bedrock, you can "put words in Claude's mouth" by including an assistant
role message as the last item in the messages
array.
[!IMPORTANT] The returned completion will not include your "pre-fill" text, since it is part of the prompt itself. Make sure to prefix Claude's completion with your pre-fill.
import os
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
messages = [
{"role": "user", "content": "How do you say 'Hello' in German? Return your answer as a JSON object, like this:\n\n{ \"Hello\": \"Hallo\" }"},
{"role": "assistant", "content": "{"},
]
response = completion(model="bedrock/anthropic.claude-v2", messages=messages)
Example prompt sent to Claude​
Human: How do you say 'Hello' in German? Return your answer as a JSON object, like this:
{ "Hello": "Hallo" }
Assistant: {
Usage - "System" messages​
If you're using Anthropic's Claude 2.1 with Bedrock, system
role messages are properly formatted for you.
import os
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
messages = [
{"role": "system", "content": "You are a snarky assistant."},
{"role": "user", "content": "How do I boil water?"},
]
response = completion(model="bedrock/anthropic.claude-v2:1", messages=messages)
Example prompt sent to Claude​
You are a snarky assistant.
Human: How do I boil water?
Assistant:
Usage - Streaming​
import os
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True
)
for chunk in response:
print(chunk)
Example Streaming Output Chunk​
{
"choices": [
{
"finish_reason": null,
"index": 0,
"delta": {
"content": "ase can appeal the case to a higher federal court. If a higher federal court rules in a way that conflicts with a ruling from a lower federal court or conflicts with a ruling from a higher state court, the parties involved in the case can appeal the case to the Supreme Court. In order to appeal a case to the Sup"
}
}
],
"created": null,
"model": "anthropic.claude-instant-v1",
"usage": {
"prompt_tokens": null,
"completion_tokens": null,
"total_tokens": null
}
}
Boto3 - Authentication​
Passing credentials as parameters - Completion()​
Pass AWS credentials as parameters to litellm.completion
import os
from litellm import completion
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=[{ "content": "Hello, how are you?","role": "user"}],
aws_access_key_id="",
aws_secret_access_key="",
aws_region_name="",
)
Passing an external BedrockRuntime.Client as a parameter - Completion()​
Pass an external BedrockRuntime.Client object as a parameter to litellm.completion. Useful when using an AWS credentials profile, SSO session, assumed role session, or if environment variables are not available for auth.
Create a client from session credentials:
import boto3
from litellm import completion
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name="us-east-1",
aws_access_key_id="",
aws_secret_access_key="",
aws_session_token="",
)
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=[{ "content": "Hello, how are you?","role": "user"}],
aws_bedrock_client=bedrock,
)
Create a client from AWS profile in ~/.aws/config
:
import boto3
from litellm import completion
dev_session = boto3.Session(profile_name="dev-profile")
bedrock = dev_session.client(
service_name="bedrock-runtime",
region_name="us-east-1",
)
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=[{ "content": "Hello, how are you?","role": "user"}],
aws_bedrock_client=bedrock,
)
SSO Login (AWS Profile)​
- Set
AWS_PROFILE
environment variable - Make bedrock completion call
import os
from litellm import completion
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
or pass aws_profile_name
:
import os
from litellm import completion
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=[{ "content": "Hello, how are you?","role": "user"}],
aws_profile_name="dev-profile",
)
STS based Auth​
- Set
aws_role_name
andaws_session_name
in completion() / embedding() function
Make the bedrock completion call
from litellm import completion
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
If you also need to dynamically set the aws user accessing the role, add the additional args in the completion()/embedding() function
from litellm import completion
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
Provisioned throughput models​
To use provisioned throughput Bedrock models pass
model=bedrock/<base-model>
, examplemodel=bedrock/anthropic.claude-v2
. Setmodel
to any of the Supported AWS modelsmodel_id=provisioned-model-arn
Completion
import litellm
response = litellm.completion(
model="bedrock/anthropic.claude-instant-v1",
model_id="provisioned-model-arn",
messages=[{"content": "Hello, how are you?", "role": "user"}]
)
Embedding
import litellm
response = litellm.embedding(
model="bedrock/amazon.titan-embed-text-v1",
model_id="provisioned-model-arn",
input=["hi"],
)
Supported AWS Bedrock Models​
Here's an example of using a bedrock model with LiteLLM
Model Name | Command |
---|---|
Anthropic Claude-V3 | completion(model='bedrock/anthropic.claude-3-sonnet-20240229-v1:0', messages=messages) |
Anthropic Claude-V2.1 | completion(model='bedrock/anthropic.claude-v2:1', messages=messages) |
Anthropic Claude-V2 | completion(model='bedrock/anthropic.claude-v2', messages=messages) |
Anthropic Claude-Instant V1 | completion(model='bedrock/anthropic.claude-instant-v1', messages=messages) |
Amazon Titan Lite | completion(model='bedrock/amazon.titan-text-lite-v1', messages=messages) |
Amazon Titan Express | completion(model='bedrock/amazon.titan-text-express-v1', messages=messages) |
Cohere Command | completion(model='bedrock/cohere.command-text-v14', messages=messages) |
AI21 J2-Mid | completion(model='bedrock/ai21.j2-mid-v1', messages=messages) |
AI21 J2-Ultra | completion(model='bedrock/ai21.j2-ultra-v1', messages=messages) |
Meta Llama 2 Chat 13b | completion(model='bedrock/meta.llama2-13b-chat-v1', messages=messages) |
Meta Llama 2 Chat 70b | completion(model='bedrock/meta.llama2-70b-chat-v1', messages=messages) |
Mistral 7B Instruct | completion(model='bedrock/mistral.mistral-7b-instruct-v0:2', messages=messages) |
Mixtral 8x7B Instruct | completion(model='bedrock/mistral.mixtral-8x7b-instruct-v0:1', messages=messages) |
Bedrock Embedding​
API keys​
This can be set as env variables or passed as params to litellm.embedding()
import os
os.environ["AWS_ACCESS_KEY_ID"] = "" # Access key
os.environ["AWS_SECRET_ACCESS_KEY"] = "" # Secret access key
os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2
Usage​
from litellm import embedding
response = embedding(
model="bedrock/amazon.titan-embed-text-v1",
input=["good morning from litellm"],
)
print(response)
Supported AWS Bedrock Embedding Models​
Model Name | Function Call |
---|---|
Titan Embeddings - G1 | embedding(model="bedrock/amazon.titan-embed-text-v1", input=input) |
Cohere Embeddings - English | embedding(model="bedrock/cohere.embed-english-v3", input=input) |
Cohere Embeddings - Multilingual | embedding(model="bedrock/cohere.embed-multilingual-v3", input=input) |
Image Generation​
Use this for stable diffusion on bedrock
Usage​
import os
from litellm import image_generation
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = image_generation(
prompt="A cute baby sea otter",
model="bedrock/stability.stable-diffusion-xl-v0",
)
print(f"response: {response}")
Set optional params
import os
from litellm import image_generation
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = image_generation(
prompt="A cute baby sea otter",
model="bedrock/stability.stable-diffusion-xl-v0",
### OPENAI-COMPATIBLE ###
size="128x512", # width=128, height=512
### PROVIDER-SPECIFIC ### see `AmazonStabilityConfig` in bedrock.py for all params
seed=30
)
print(f"response: {response}")
Supported AWS Bedrock Image Generation Models​
Model Name | Function Call |
---|---|
Stable Diffusion - v0 | embedding(model="bedrock/stability.stable-diffusion-xl-v0", prompt=prompt) |
Stable Diffusion - v0 | embedding(model="bedrock/stability.stable-diffusion-xl-v1", prompt=prompt) |