Skip to main content

OpenAI

LiteLLM supports OpenAI Chat + Text completion and embedding calls.

Required API Keys​

import os 
os.environ["OPENAI_API_KEY"] = "your-api-key"

Usage​

import os 
from litellm import completion

os.environ["OPENAI_API_KEY"] = "your-api-key"

# openai call
response = completion(
model = "gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)

Optional Keys - OpenAI Organization, OpenAI API Base​

import os 
os.environ["OPENAI_ORGANIZATION"] = "your-org-id" # OPTIONAL
os.environ["OPENAI_API_BASE"] = "openaiai-api-base" # OPTIONAL

OpenAI Chat Completion Models​

Model NameFunction Call
gpt-4-0125-previewresponse = completion(model="gpt-4-0125-preview", messages=messages)
gpt-4-1106-previewresponse = completion(model="gpt-4-1106-preview", messages=messages)
gpt-3.5-turbo-1106response = completion(model="gpt-3.5-turbo-1106", messages=messages)
gpt-3.5-turboresponse = completion(model="gpt-3.5-turbo", messages=messages)
gpt-3.5-turbo-0301response = completion(model="gpt-3.5-turbo-0301", messages=messages)
gpt-3.5-turbo-0613response = completion(model="gpt-3.5-turbo-0613", messages=messages)
gpt-3.5-turbo-16kresponse = completion(model="gpt-3.5-turbo-16k", messages=messages)
gpt-3.5-turbo-16k-0613response = completion(model="gpt-3.5-turbo-16k-0613", messages=messages)
gpt-4response = completion(model="gpt-4", messages=messages)
gpt-4-0314response = completion(model="gpt-4-0314", messages=messages)
gpt-4-0613response = completion(model="gpt-4-0613", messages=messages)
gpt-4-32kresponse = completion(model="gpt-4-32k", messages=messages)
gpt-4-32k-0314response = completion(model="gpt-4-32k-0314", messages=messages)
gpt-4-32k-0613response = completion(model="gpt-4-32k-0613", messages=messages)

These also support the OPENAI_API_BASE environment variable, which can be used to specify a custom API endpoint.

OpenAI Vision Models​

Model NameFunction Call
gpt-4-vision-previewresponse = completion(model="gpt-4-vision-preview", messages=messages)

Usage​

import os 
from litellm import completion

os.environ["OPENAI_API_KEY"] = "your-api-key"

# openai call
response = completion(
model = "gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What’s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
)

OpenAI Text Completion Models / Instruct Models​

Model NameFunction Call
gpt-3.5-turbo-instructresponse = completion(model="gpt-3.5-turbo-instruct", messages=messages)
gpt-3.5-turbo-instruct-0914response = completion(model="gpt-3.5-turbo-instruct-091", messages=messages)
text-davinci-003response = completion(model="text-davinci-003", messages=messages)
ada-001response = completion(model="ada-001", messages=messages)
curie-001response = completion(model="curie-001", messages=messages)
babbage-001response = completion(model="babbage-001", messages=messages)
babbage-002response = completion(model="babbage-002", messages=messages)
davinci-002response = completion(model="davinci-002", messages=messages)

Advanced​

Parallel Function calling​

See a detailed walthrough of parallel function calling with litellm here

import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})

messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]

response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls

Setting extra_headers for completion calls​

import os 
from litellm import completion

os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model = "gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}],
extra_headers={"AI-Resource Group": "ishaan-resource"}
)

Setting Organization-ID for completion calls​

This can be set in one of the following ways:

  • Environment Variable OPENAI_ORGANIZATION
  • Params to litellm.completion(model=model, organization="your-organization-id")
  • Set as litellm.organization="your-organization-id"
import os 
from litellm import completion

os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_ORGANIZATION"] = "your-org-id" # OPTIONAL

response = completion(
model = "gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)

Set ssl_verify=False​

This is done by setting your own httpx.Client

  • For litellm.completion set litellm.client_session=httpx.Client(verify=False)
  • For litellm.acompletion set litellm.aclient_session=AsyncClient.Client(verify=False)
import litellm, httpx

# for completion
litellm.client_session = httpx.Client(verify=False)
response = litellm.completion(
model="gpt-3.5-turbo",
messages=messages,
)

# for acompletion
litellm.aclient_session = httpx.AsyncClient(verify=False)
response = litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
)

Using Helicone Proxy with LiteLLM​

import os 
import litellm
from litellm import completion

os.environ["OPENAI_API_KEY"] = ""

# os.environ["OPENAI_API_BASE"] = ""
litellm.api_base = "https://oai.hconeai.com/v1"
litellm.headers = {
"Helicone-Auth": f"Bearer {os.getenv('HELICONE_API_KEY')}",
"Helicone-Cache-Enabled": "true",
}

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion("gpt-3.5-turbo", messages)

Using OpenAI Proxy with LiteLLM​

import os 
import litellm
from litellm import completion

os.environ["OPENAI_API_KEY"] = ""

# set custom api base to your proxy
# either set .env or litellm.api_base
# os.environ["OPENAI_API_BASE"] = ""
litellm.api_base = "your-openai-proxy-url"


messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion("openai/your-model-name", messages)

If you need to set api_base dynamically, just pass it in completions instead - completions(...,api_base="your-proxy-api-base")

For more check out setting API Base/Keys