OpenAI
LiteLLM supports OpenAI Chat + Text completion and embedding calls.
Required API Keysβ
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
Usageβ
import os
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
# openai call
response = completion(
model = "gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
Optional Keys - OpenAI Organization, OpenAI API Baseβ
import os
os.environ["OPENAI_ORGANIZATION"] = "your-org-id" # OPTIONAL
os.environ["OPENAI_API_BASE"] = "openaiai-api-base" # OPTIONAL
OpenAI Chat Completion Modelsβ
Model Name | Function Call |
---|---|
gpt-4-0125-preview | response = completion(model="gpt-4-0125-preview", messages=messages) |
gpt-4-1106-preview | response = completion(model="gpt-4-1106-preview", messages=messages) |
gpt-3.5-turbo-1106 | response = completion(model="gpt-3.5-turbo-1106", messages=messages) |
gpt-3.5-turbo | response = completion(model="gpt-3.5-turbo", messages=messages) |
gpt-3.5-turbo-0301 | response = completion(model="gpt-3.5-turbo-0301", messages=messages) |
gpt-3.5-turbo-0613 | response = completion(model="gpt-3.5-turbo-0613", messages=messages) |
gpt-3.5-turbo-16k | response = completion(model="gpt-3.5-turbo-16k", messages=messages) |
gpt-3.5-turbo-16k-0613 | response = completion(model="gpt-3.5-turbo-16k-0613", messages=messages) |
gpt-4 | response = completion(model="gpt-4", messages=messages) |
gpt-4-0314 | response = completion(model="gpt-4-0314", messages=messages) |
gpt-4-0613 | response = completion(model="gpt-4-0613", messages=messages) |
gpt-4-32k | response = completion(model="gpt-4-32k", messages=messages) |
gpt-4-32k-0314 | response = completion(model="gpt-4-32k-0314", messages=messages) |
gpt-4-32k-0613 | response = completion(model="gpt-4-32k-0613", messages=messages) |
These also support the OPENAI_API_BASE
environment variable, which can be used to specify a custom API endpoint.
OpenAI Vision Modelsβ
Model Name | Function Call |
---|---|
gpt-4-vision-preview | response = completion(model="gpt-4-vision-preview", messages=messages) |
Usageβ
import os
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
# openai call
response = completion(
model = "gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whatβs in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
)
OpenAI Text Completion Models / Instruct Modelsβ
Model Name | Function Call |
---|---|
gpt-3.5-turbo-instruct | response = completion(model="gpt-3.5-turbo-instruct", messages=messages) |
gpt-3.5-turbo-instruct-0914 | response = completion(model="gpt-3.5-turbo-instruct-091", messages=messages) |
text-davinci-003 | response = completion(model="text-davinci-003", messages=messages) |
ada-001 | response = completion(model="ada-001", messages=messages) |
curie-001 | response = completion(model="curie-001", messages=messages) |
babbage-001 | response = completion(model="babbage-001", messages=messages) |
babbage-002 | response = completion(model="babbage-002", messages=messages) |
davinci-002 | response = completion(model="davinci-002", messages=messages) |
Advancedβ
Parallel Function callingβ
See a detailed walthrough of parallel function calling with litellm here
import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
Setting extra_headers
for completion callsβ
import os
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
response = completion(
model = "gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}],
extra_headers={"AI-Resource Group": "ishaan-resource"}
)
Setting Organization-ID for completion callsβ
This can be set in one of the following ways:
- Environment Variable
OPENAI_ORGANIZATION
- Params to
litellm.completion(model=model, organization="your-organization-id")
- Set as
litellm.organization="your-organization-id"
import os
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_ORGANIZATION"] = "your-org-id" # OPTIONAL
response = completion(
model = "gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
Set ssl_verify=False
β
This is done by setting your own httpx.Client
- For
litellm.completion
setlitellm.client_session=httpx.Client(verify=False)
- For
litellm.acompletion
setlitellm.aclient_session=AsyncClient.Client(verify=False)
import litellm, httpx
# for completion
litellm.client_session = httpx.Client(verify=False)
response = litellm.completion(
model="gpt-3.5-turbo",
messages=messages,
)
# for acompletion
litellm.aclient_session = httpx.AsyncClient(verify=False)
response = litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
)
Using Helicone Proxy with LiteLLMβ
import os
import litellm
from litellm import completion
os.environ["OPENAI_API_KEY"] = ""
# os.environ["OPENAI_API_BASE"] = ""
litellm.api_base = "https://oai.hconeai.com/v1"
litellm.headers = {
"Helicone-Auth": f"Bearer {os.getenv('HELICONE_API_KEY')}",
"Helicone-Cache-Enabled": "true",
}
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion("gpt-3.5-turbo", messages)
Using OpenAI Proxy with LiteLLMβ
import os
import litellm
from litellm import completion
os.environ["OPENAI_API_KEY"] = ""
# set custom api base to your proxy
# either set .env or litellm.api_base
# os.environ["OPENAI_API_BASE"] = ""
litellm.api_base = "your-openai-proxy-url"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion("openai/your-model-name", messages)
If you need to set api_base dynamically, just pass it in completions instead - completions(...,api_base="your-proxy-api-base")
For more check out setting API Base/Keys