Replicate
LiteLLM supports all models on Replicate
API KEYS​
import os
os.environ["REPLICATE_API_KEY"] = ""
Example Call​
from litellm import completion
import os
## set ENV variables
os.environ["REPLICATE_API_KEY"] = "replicate key"
# replicate llama-2 call
response = completion(
model="replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)
Example - Calling Replicate Deployments​
Calling a deployed replicate LLM
Add the replicate/deployments/
prefix to your model, so litellm will call the deployments
endpoint. This will call ishaan-jaff/ishaan-mistral
deployment on replicate
response = completion(
model="replicate/deployments/ishaan-jaff/ishaan-mistral",
messages= [{ "content": "Hello, how are you?","role": "user"}]
)
Replicate responses can take 3-5 mins due to replicate cold boots, if you're trying to debug try making the request with litellm.set_verbose=True
. More info on replicate cold boots
Replicate Models​
liteLLM supports all replicate LLMs
For replicate models ensure to add a replicate/
prefix to the model
arg. liteLLM detects it using this arg.
Below are examples on how to call replicate LLMs using liteLLM
Model Name | Function Call | Required OS Variables |
---|---|---|
replicate/llama-2-70b-chat | completion(model='replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf', messages, supports_system_prompt=True) | os.environ['REPLICATE_API_KEY'] |
a16z-infra/llama-2-13b-chat | completion(model='replicate/a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52', messages, supports_system_prompt=True) | os.environ['REPLICATE_API_KEY'] |
replicate/vicuna-13b | completion(model='replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b', messages) | os.environ['REPLICATE_API_KEY'] |
daanelson/flan-t5-large | completion(model='replicate/daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f', messages) | os.environ['REPLICATE_API_KEY'] |
custom-llm | completion(model='replicate/custom-llm-version-id', messages) | os.environ['REPLICATE_API_KEY'] |
replicate deployment | completion(model='replicate/deployments/ishaan-jaff/ishaan-mistral', messages) | os.environ['REPLICATE_API_KEY'] |
Passing additional params - max_tokens, temperature​
See all litellm.completion supported params here
# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["REPLICATE_API_KEY"] = "replicate key"
# replicate llama-2 call
response = completion(
model="replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)
Passings Replicate specific params​
Send params not supported by litellm.completion()
but supported by Replicate by passing them to litellm.completion
Example seed
, min_tokens
are Replicate specific param
# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["REPLICATE_API_KEY"] = "replicate key"
# replicate llama-2 call
response = completion(
model="replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
messages = [{ "content": "Hello, how are you?","role": "user"}],
seed=-1,
min_tokens=2,
top_k=20,
)